Serious And Wholly Unexpected Ozone Loss Over The U.S., Skin Cancer Risk Rises, Geo-Engineering Solution Proposed
Friday, July 27, 2012 14:57

By Alton Parrish

Harvard researchers find link between climate change, ozone loss and possible increase in skin cancer incidence

For decades, scientists have known that the effects of global climate change could have a potentially devastating impact across the globe, but Harvard researchers say there is now evidence that it may also have a dramatic impact on public health.

A team of Harvard scientists led by Weld professor of atmospheric chemistry James G. Anderson announced  the discovery of serious and wholly unexpected ozone loss over the United States in summer. The finding, published in advance online on July 26 at Science’s Science Express website, is startling because the complex atmospheric chemistry that destroys ozone has previously been thought to occur only at very cold temperatures over polar regions where there is very little threat to humans. (A large hole in the ozone layer persists over Antarctica.) The discovery also links—for the first time—ozone loss (an issue around which world leaders successfully organized to ban chlorofluorocarbons, or CFCs) to climate change (a global problem that has so far proven politically intractable).

James G. Anderson
Credit Harvard University

The ozone layer blocks a large fraction of the sun’s ultraviolet light from reaching the earth, protecting life forms from potentially damaging radiation that in humans can lead to skin cancer. But stratospheric ozone is susceptible to chemical catalysts of manmade origin, such as chlorine and bromine, which are present in the earth’s atmosphere as a result of the formerly widespread commercial use of CFCs. And the chemical reactions that destroy ozone are highly dependent on both atmospheric temperature and the presence of water vapor.

File:Ozone cycle.svg

Anderson’s team has discovered that during intense summer storms over the United States, water vapor is thrust by convection far higher into the lower stratosphere than previously thought possible, altering atmospheric conditions in a way that leads to substantial, widespread ozone loss throughout the ensuing week. The paper links the loss of ozone over populated mid-latitude regions in summer to the frequency and intensity of these big storms, which could increase with climate change resulting from rising levels of carbon dioxide and methane in the atmosphere.

“We were investigating the behavior of convective water vapor as part of our climate research,” Anderson says, “not ozone photochemistry. What proved surprising was the remarkable altitude to which water vapor was being lofted—altitudes exceeding 60,000 feet—and how frequently it was happening.”

Anderson and his team realized the significance of the finding because higher water- vapor concentrations in the cold reaches of the lower stratosphere change the threshold temperature at which chlorine is converted to a free radical state: in the presence of water vapor, direct catalytic removal of ozone takes place at warmer temperatures.

File:Sources of stratospheric chlorine.png

In continuing studies the team used isotopic signatures to demonstrate that the water vapor had been carried directly to the stratosphere as a result of convective injection. And in the region of convectively injected water vapor, the researchers found that the catalytic loss of ozone increased by a hundredfold. As a result, rates of ozone loss could exceed the natural rates of ozone regeneration (and replacement through transport from other regions) by two orders of magnitude. These data come from experimental evidence gathered over the United States, but the researchers note that similar conditions may exist elsewhere.

These findings have a public-health impact because they indicate that significant amounts of ozone can be destroyed in only a few days within regions of high water-vapor concentration—and skin-cancer incidence is associated with ultraviolet (UV) dosage levels, which in turn depend on ozone concentrations.

The findings are troubling also because—if the currently extremely dry stratosphere were to become wetter (as happened during earlier periods of elevated carbon dioxide, as indicated in the paleorecord)—the impact on ozone levels could be significant. The high current loading of chlorine and bromine resulting from earlier commercial release of CFCs and halons is unprecedented in Earth’s history.

“Were the intensity and frequency of convective events to increase irreversibly as a result of climate forcing,” the scientists write, “decreases in ozone and associated increases in UV dosage would also be irreversible.”

The Science paper notes that loss of ice in the Artic threatens to release significant amounts of carbon dioxide and methane from the soils of Siberia and Northern Alaska, potentially accelerating climate change. The researchers also note that an increasingly cited remedy for climate change—geo-engineering the climate by launching sulfate particles directly into the atmosphere in order to reflect sunlight away from Earth—would accelerate the process of ozone loss by increasing the reactive surface area for the conversion of chlorine to free radical form, as was observed after the eruption of Mount Pinatubo in 1991.

Mario Molina, S.D. ’12, Distinguished Professor of chemistry and biochemistry at UC, San Diego, andco-recipient of the 1995 Nobel Prize in chemistry for his work on CFCs and ozone depletion, says that the findings described in the Science paper are “something very much to worry about, because there is the potential for a pretty significant effect on stratospheric ozone at latitudes where we normally wouldn’t think that would happen.” His own famous 1974 paper on CFC and ozone chemistry, he notes, was largely hypothesis, whereas the Anderson team’s work is based on science that is well-established: even though the results will have to be tested with further measurements, he says that “there is not much speculation” in the paper.

The location of the ozone loss in this case gives special cause for concern. Because the Antarctic ozone hole is confined to the most southern latitudes and only occasionally moves toward the southern tip of South America, scientists have little field experience with biological impacts. “DNA, of course, is constantly being damaged by ultraviolet radiation,” notes Molina, “and there is a natural repair mechanism. But should ozone disappear in the way described in Professor Anderson’s paper, this would very much be a threat. Many ecological systems are quite sensitive to ultraviolet radiation and they have not evolved the repair mechanisms for more severe ozone depletion.”

Molina says this is “a further indication of society having impacts on the environment which in principle we can do something about.” Harking back to the ozone issue, he points out that if there had “been nointernational agreement to ban CFCs” in the late 1980s, this newly described problem “would have been a lot worse.” He hopes that “these types of warnings will make the case even stronger for society to begin to react to the climate-change issue, just like we managed to do with the ozone issue.”

Ralph Cicerone, president of the National Academy of Sciences and himself an atmospheric chemist, says that Anderson’s group has “come up with a very important overall picture where the individual pieces are well mapped out; they have been studied by the world’s best experts and they work.” How serious the findings are is not yet clear, Cicerone says, “but what the Anderson group is talking about can be measured fairly quickly. It is now just a matter of marshaling the people and resources to investigate further.”

“Then we can figure out what the influence is on ozone,” he continues, “and how much more ultraviolet light penetrates to the surface of the earth, so that we can get to the bottom-line effects on human health, as well as crop and other damage.” If further investigation verifies the Anderson team’s findings, then the impacts in “a future climate where the air is getting warmer and moister” will need to be considered, Cicerone says. Are these storms that “thrust moisture into the stratosphere going to be more frequent?” he asks. “We think they are.”

Anderson’s pioneering work on ozone-loss research, including the first attempt to obtain numerous readings at well-defined altitudes as high as eight miles above the earth by using a tethered balloon, was described in a Harvard Magazine cover story in the January-February 1983 issue. 

Image of the largest Antarctic ozone hole ever recorded (September 2006), over the Southern poleFile:160658main2 OZONE large 350.png

In the system described by Anderson and his team, water vapor injected into the stratosphere by powerful thunderstorms converts stable forms of chlorine and bromine into free radicals capable of transforming ozone molecules into oxygen. Recent studies have suggested that the number and intensity of such storms are linked to climate changes, Anderson said, which could in turn lead to increased ozone loss and greater levels of harmful UV radiation reaching the Earth’s surface, and potentially higher rates of skin cancer.

“If you were to ask me where this fits into the spectrum of things I worry about, right now it’s at the top of the list,” Anderson said. “What this research does is connect, for the first time, climate change with ozone depletion, and ozone loss is directly tied to increases in skin cancer incidence, because more ultraviolet radiation is penetrating the atmosphere.”

Unfortunately, Anderson said, we don’t know how this process will evolve over time.

“We don’t know what the development of this has been – we don’t have measurements of this deep convective injection of water into the stratosphere that go back in time,” Anderson said.

“But the best guide for the evolution of this is to look at the research that connects climate change with severe storm intensity and frequency, and it’s clear that there is a developing scientific case that the addition of carbon dioxide to the atmosphere is increasing climate change, and in turn driving severe storm intensity and frequency.”

While it’s impossible to know how many skin cancer cases may be related to ozone depletion over the U.S., the link between ozone loss and increased incidence of the disease has been extensively studied, Anderson said.

“There has been a major effort by the medical community to define the relationship between decreases in ozone and the subsequent increases in skin cancer,” he said. “The answer is quite clear – if you multiply the fractional decrease in ozone protection by about three, you get the increase in skin cancer incidence. There are 1 million new skin cancer cases in the U.S. annually – it’s the most common form of cancer, and it’s one that’s increasing in spite of all the medical research devoted to it.”

You need to be a member of puredevoteeseva to add comments!

Join puredevoteeseva

Votes: 0
Email me when people reply –

Replies

  • Godbye blue sky, along with the taste of vegetables and fruits, along with a pleasantly shining sun; hello flavorless Frankenfood and blinding harshness of the sunlight.

This reply was deleted.